Extensions 1→N→G→Q→1 with N=C23.9D4 and Q=C2

Direct product G=NxQ with N=C23.9D4 and Q=C2
dρLabelID
C2xC23.9D432C2xC2^3.9D4128,471

Semidirect products G=N:Q with N=C23.9D4 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.9D4:1C2 = C24.167C23φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4:1C2128,531
C23.9D4:2C2 = C24.68D4φ: C2/C1C2 ⊆ Out C23.9D416C2^3.9D4:2C2128,551
C23.9D4:3C2 = C24.C23φ: C2/C1C2 ⊆ Out C23.9D4168+C2^3.9D4:3C2128,560
C23.9D4:4C2 = C24.D4φ: C2/C1C2 ⊆ Out C23.9D416C2^3.9D4:4C2128,75
C23.9D4:5C2 = C24.22D4φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4:5C2128,599
C23.9D4:6C2 = C25.C22φ: C2/C1C2 ⊆ Out C23.9D416C2^3.9D4:6C2128,621
C23.9D4:7C2 = C24.26D4φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4:7C2128,622
C23.9D4:8C2 = C24.78D4φ: C2/C1C2 ⊆ Out C23.9D416C2^3.9D4:8C2128,630
C23.9D4:9C2 = C24.174C23φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4:9C2128,631
C23.9D4:10C2 = C24.28D4φ: C2/C1C2 ⊆ Out C23.9D4168+C2^3.9D4:10C2128,645
C23.9D4:11C2 = C24:D4φ: C2/C1C2 ⊆ Out C23.9D416C2^3.9D4:11C2128,753
C23.9D4:12C2 = C24.31D4φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4:12C2128,754
C23.9D4:13C2 = C24:2Q8φ: C2/C1C2 ⊆ Out C23.9D416C2^3.9D4:13C2128,761
C23.9D4:14C2 = C24:Q8φ: C2/C1C2 ⊆ Out C23.9D4168+C2^3.9D4:14C2128,764
C23.9D4:15C2 = C24.33D4φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4:15C2128,776
C23.9D4:16C2 = C4xC23:C4φ: trivial image32C2^3.9D4:16C2128,486

Non-split extensions G=N.Q with N=C23.9D4 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.9D4.1C2 = C24.169C23φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4.1C2128,552
C23.9D4.2C2 = C24.4C23φ: C2/C1C2 ⊆ Out C23.9D4168+C2^3.9D4.2C2128,836
C23.9D4.3C2 = C23.4D8φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4.3C2128,76
C23.9D4.4C2 = C23.Q16φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4.4C2128,83
C23.9D4.5C2 = C24.4D4φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4.5C2128,84
C23.9D4.6C2 = C24.176C23φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4.6C2128,728
C23.9D4.7C2 = C24.180C23φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4.7C2128,762
C23.9D4.8C2 = C24.182C23φ: C2/C1C2 ⊆ Out C23.9D432C2^3.9D4.8C2128,794
C23.9D4.9C2 = C24.162C23φ: trivial image32C2^3.9D4.9C2128,472

׿
x
:
Z
F
o
wr
Q
<